Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration
نویسندگان
چکیده
To achieve a good clinical outcome in radiotherapy treatment, a certain accuracy in the dose delivered to the patient is required. Therefore, it is necessary to keep the uncertainty in each of the steps of the process inside some acceptable values, which implies a global uncertainty as low as possible. This work is focused on the uncertainty evaluation of absorbed dose to water in the routine calibration for clinical beams, in the range of energies used in external radiotherapy. With this aim, different uncertainty components (corrected electrometer reading, calibration factor, beam quality correction factor and reference conditions) associated to beam calibration have been considered. Results show a typical uncertainty in the determination of absorbed dose to water during beam calibration around 1.3% for photon beams and 1.5% for electron beams (k=1 in both cases) when the N(D,w) formalism is used and is theoretically calculated. These values may be different depending on the uncertainty provided by the standards laboratory for calibration factor, which is shown in the work. If the total application of the N(D,w) formalism, that is to say, specific calibrations of each chamber in the user's beam qualities, is taken into account the uncertainty in this step of the process could be placed close to 1.0%. Furthermore, the possibility of an uncertainty reduction with the absorbed dose to water formalism adoption against the air kerma one is discussed.
منابع مشابه
Standard calibration of ionization chambers used in radiation therapy dosimetry and evaluation of uncertainties
Background: Absolute dosimetry of external beam radiotherapy is carried out by the use of ionization chambers. These chambers must be calibrated at a standard dosimetry laboratory before any use in clinical dosimetry. The secondary standard dosimetry laboratory of Iran (SSDL) has the duty of calibrating the ionization chambers used in radiotherapy centers in Iran. Materials and Methods...
متن کاملSome steps towards establishing a tertiary standard dosimetry laboratory at a radiotherapy department
Background: In order to deliver the precise dose to the target in radiotherapy, absorbed dose to water at the reference point should be assessed. When the calibration procedure is performed for a reference dosimeter in the 60Co beam of a Secondary Standard Dosimetry Laboratory (SSDL), the total uncertainty in absorbed dose to water (Dw) is estimated to be approximately 1.5%. This study attempts...
متن کاملAn Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region
Purpose: Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target volume under dosage. In this study, we aimed to evaluate beam attenuation and variation of build-up region in 550 TxT radiotherapy couch.Materials and Methods: In this study, we ...
متن کاملCalculations of absorbed dose and energy dependent of small-scale dosimeters for photons beam therapy
In this study, the energy dependency for dosimeters of air ionization chambers, lithium fluoride, silicon and plastic scintillator has been studied using the MCNPX Monte Carlo simulation code and simulated for gamma energy in the range of radiotherapy energy. The simulation results show that the response of each of the dosimeters for gamma photon beams in the energy range of 0.2 to 20 MeV varie...
متن کاملVerification of the Accuracy of the Delivered Dose in Brain Tumors by in Vivo Dosimetry Using Diode Detectors
Introduction: During radiotherapy, high accuracy in the dose delivery is required because there is a strong relationship between the absorbed dose, local tumor control and particularly the normal tissue damage. In many institutions, in vivo dosimetry using diodes is performed to check the actual dose delivered. In general, the uncertainty in the dose delivered should fall within ± 5% of the...
متن کامل